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Abstract. We present the results of a quenched lattice calculation of the operator matrix elements rele-
vant for predicting the Bs width difference. Our main result is (∆ΓBs/ΓBs) = (4.7 ± 1.5 ± 1.6) × 10−2,
obtained from the ratio of matrix elements R(mb) = 〈B̄0

s |QS |B0
s 〉/〈B̄0

s |QL|B0
s 〉 = −0.93(3)+0.00

−0.01. R(mb)
was evaluated from the two relevant B parameters BMS

S (mb) = 0.86(2)+0.02
−0.03 and BMS

Bs
(mb) = 0.91(3)+0.00

−0.06,
which we computed in our simulation.

1 Introduction

In the standard model, the width difference (∆ΓBs
/ΓBs)

of Bs mesons is expected to be rather large and within
reach of being measured in the near future. Recent exper-
imental studies [1,2] already provide an interesting bound
on this quantity. In particular, in [2] the limit (∆ΓBs/ΓBs)
< 0.31 (95%C.L.) is quoted1.

Theoretically, the prediction of (∆Γ/Γ )Bs
relies on

the use of the operator product expansion (OPE), where
the large scale is provided by the heavy-quark mass [3].
All recent developments, including the calculation of the
next-to-leading order (NLO) perturbative QCD correc-
tions, have been discussed in great detail in [4–6]. The
theoretical estimates are in the range (∆ΓBs/ΓBs) = (5÷
15)% and crucially depend on the size of relevant hadronic
matrix elements which must be computed non-perturba-
tively.

In this paper we present a new lattice calculation of
the main contribution to (∆ΓBs/ΓBs). On the basis of our
results, and using the expressions given below, we predict

∆ΓBs

ΓBs

= (4.7 ± 1.5 ± 1.6) × 10−2, (1)

where the last error is obtained by assuming an uncer-
tainty of 30% on the 1/mb corrections.

We now present the relevant formulae which have been
used to get the prediction in (1). Up to and including 1/mb

corrections, the theoretical expression for (∆ΓBs/ΓBs)
reads [4]

∆ΓBs

ΓBs

=
G2

Fm
2
b

12πmBs

|VcbVcs|2τBs(G(z)〈QL(mb)〉
1 For this estimate, the average Bs decay width was assumed

to be the same as for Bd mesons

− GS(z)〈QS(mb)〉 + δ1/m

√
1 − 4z), (2)

where z = m2
c/m

2
b and G(z) and GS(z) are functions

which have been computed in perturbation theory at the
next-to-leading order (NLO) [6]. 〈QL,S〉 = 〈B̄0

s |QL,S |B0
s 〉

are the hadronic matrix elements of the renormalized op-
erators relevant at the lowest order in the heavy-quark
expansion

QL = b̄iγµ(1 − γ5)sib̄jγµ(1 − γ5)sj

QS = b̄i(1 − γ5)sib̄j(1 − γ5)sj , (3)

where i and j are color indices. The last term in (2),
δ1/m(1 − 4z)1/2, represents the contribution of 1/mb cor-
rections.

In order to reduce the uncertainties of the theoretical
predictions, it is convenient to consider the ratio of the
width and mass differences of the B0

s–B̄
0
s system

∆ΓBs

∆mBs

=
4π
3

m2
b

m2
W

|VcbVcs

VtsVtb
|2 1
ηB(mb)S0(xt)

×
(
G(z) −GS(z)

〈QS〉
〈QL〉 + δ̃1/m

)
, (4)

where ηB(mb) has been computed in perturbation theory
to NLO [7] and S0(xt) is the usual Inami–Lim function [8].
Note that, to make contact with [6], in the above formulae
we used the MS coefficient ηB(mb) instead of the standard
ηB of [7]. Consequently, the operators QS and QL are
renormalized in the MS (NDR) scheme. We see from (4)
that (∆ΓBs/∆mBs) only depends on the ratio of matrix
elements,

R(mb) =
〈QS〉
〈QL〉 =

〈B̄0
s |QS(mb)|B0

s 〉
〈B̄0

s |QL(mb)|B0
s 〉 , (5)
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which may, in principle, be directly determined on the lat-
tice. The use of R is particularly convenient because di-
mensionless quantities are not affected by the uncertainty
due to the calibration of the lattice spacing. One may also
argue that many systematic errors, induced by discretiza-
tion and quenching, cancel in the ratio of two similar am-
plitudes.

Finally, (4) allows one to express (∆ΓBs
/ΓBs) in terms

of
(i) perturbative quantities, encoded in the overall factor
and in the functions G(z) and GS(z),
(ii) a lattice measured quantity, R and
(iii) ∆mBs

which will hopefully be precisely measured in
the near future:

∆ΓBs

ΓBs

= (τBs
∆mBs

)(exp.)
K

×
(
G(z) −GS(z)R(mb) + δ̃1/m

)
, (6)

where

K =
4π
3

m2
b

m2
W

∣∣∣∣VcbVcs

VtsVtb

∣∣∣∣2 1
ηB(mb)S0(xt)

, (7)

Pending the measurement of∆mBs , for which only a lower
bound presently exists [9], one can use a modified version
of (6), namely

∆ΓBs

ΓBs

=
(
τBs∆mBd

mBs

mBd

)(exp.) ∣∣∣∣Vts

Vtd

∣∣∣∣2
× K · (G(z) −GS(z)R(mb) + δ̃1/m)ξ2, (8)

where

ξ =
fBs

√
B̂Bs

fBd

√
B̂Bd

. (9)

In this way, besides the quantities discussed above, we only
use the experimental Bd meson mass difference, which is
known with a tiny error [2]

(∆mBd
)(exp.) = 0.484(15)ps−1, (10)

and another ratio of hadronic matrix elements, namely ξ,
which is rather accurately determined in lattice simula-
tions [10,11].

For the following discussion, it is useful to write (8) as
(note the R(mb) is negative)

∆ΓBs

ΓBs

= [(0.5 ± 0.1) − (13.8 ± 2.8)R(mb)

+ (15.7 ± 2.8)δ̃1/m

]
× 10−2, (11)

where the three contributions correspond to G(z),
−GS(z)R(mb) and δ̃1/m in (8), respectively.

The advantage of using (4), (6) and (8) consists also
in the fact that, in order to predict (∆ΓBs/ΓBs), we do

not need fBs , which enters (2) when we express the ma-
trix elements in terms of B parameters. There is still a
considerable uncertainty, indeed, on fBs , which has been
evaluated both in the quenched (fBs = 195 ± 20MeV)
and unquenched (fBs

= 245 ± 30MeV) case, with a siz-
able shift between the two central values [10]. Since the
“unquenched” results are still in their infancy, however,
we think that the large quenching effect should not be
taken too serious yet.

In the numerical evaluation of the width difference,
we have used the values and errors of the parameters
given in Table 1. For the perturbative quantities G(z) and
GS(z), the main uncertainty comes from the dependence
on the renormalization scale, which was varied between
mb/2 and 2mb in [6] (with mb = 4.8GeV). For this rea-
son, we found it useless to recompute these coefficients
with mb = 4.6GeV (which is very close to the mass used
in [6] ). Instead, we took as central value the average
GS(z) = (Gµ1=mb/2

S (z) + Gµ1=2mb

S (z))/2 (see Table 1 of
that paper), and as error (Gµ1=mb/2

S (z) −Gµ1=2mb

S (z))/2.
The same was done in the case of G(z).

For the hadronic quantities, we have used the following
values:

R(mb) = −0.93(3)+0.00
−0.01, ξ = 1.16(7); (12)

R(mb) is the main result of this lattice study, while the re-
sult for ξ has already been reported in our previous paper
[11]. Following [4], for the 1/mb corrections we get

δ1/m = −2.0GeV4, (13)

using fBs
= 204MeV from [11]. This value of δ1/m cor-

responds to δ̃1/m = −0.55 (obtained with BMS
Bs

(mb) =
0.91)2. Since in the estimate of δ̃1/m, the operator ma-
trix elements were computed in the vacuum saturation
approximation (VSA), and the radiative corrections were
not included, we allow it to vary by 30%, i.e. δ̃1/m =
−0.55± 0.17. In the numerical evaluation of the factor K,
we have used the pole mass mb = 4.6GeV derived from
the MS mass in Table 1 at the NLO. Using these numbers,
from (8) we obtain the result in (1), where the last error
comes from the uncertainty on δ̃1/m.

We have an important remark to make. Equation (11)
shows explicitly the cancellation occurring between the
main contribution, proportional to R(mb), and the 1/mb

corrections, proportional to δ̃1/m. Without the latter, we
would have found a much larger value, (∆ΓBs/ΓBs) �
14 × 10−2. (∆ΓBs

/ΓBs
) would remain in the 10% range

even with a sizable, but smaller, value for the 1/mb term,
δ̃1/m = −0.30 for example. This demonstrates that, in
spite of the progress made in the evaluation of the relevant
matrix elements (〈QS〉 and 〈QL〉), a precise determination

2 In [11], we gave BMS
Bs

(mb) = 0.92(3)+0.00
−0.06. The tiny differ-

ence is due to the fact that there, in the perturbative evolution,
we used a number of flavours nf = 4 instead of nf = 0 as in
the present paper
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Table 1. Average and errors of the main parameters. When the
error is negligible it has been omitted. The heavy-quark masses
(mt, mb and mc) are the MS masses renormalized at their own
values, e.g. mt = mMS

t (mMS
t ). ms = mMS

s (µ = 2GeV) is the
strange quark mass renormalized in MS at the scale µ = 2GeV.
Its central value and error are not important in the numerical
evaluation of ∆ΓBs

Parameter Value and error

mW 80.41GeV
mBd 5.279GeV
mBs 5.369GeV
τBs 1.460 ± 0.056 ps

|Vcb| 0.0395 ± 0.0017
|Vts| 0.0386 ± 0.0013
|Vcs| 0.9759 ± 0.0005
|Vtd| 0.0080 ± 0.0005
αs(MZ) 0.118 ± 0.003
∆mBd 0.484 ± 0.015 ps−1

mt 165 ± 5GeV
mb 4.23 ± 0.07GeV
mc/mb 0.29 ± 0.02
ms 110 ± 20MeV
ηB(mb) 0.85 ± 0.02

G(z) 0.030 ± 0.007
GS(z) 0.88 ± 0.14

of the width difference requires a good control of the sub-
leading terms in the 1/mb expansion, which is missing to
date.

One can also use (6), and combine it with [9]

(∆mBs)
(exp.)

> 14.6 ps−1, (14)

to obtain a lower bound on (∆ΓBs
/ΓBs

). Given the large
uncertainties, this bound is at present rather weak. At the
1σ level we get

∆ΓBs

ΓBs

> 2.5 × 10−2 (68%C.L.). (15)

Following [2], from (6) and the limit (∆ΓBs
/ΓBs

) < 0.31,
we could also obtain an upper limit on ∆mBs . In our case
this is not very interesting, however, since we find a very
large upper bound of O(200) ps−1.

Our prediction in (1) is in good agreement with [6]. It
is instead about a factor of two smaller than the result of
[17]. A detailed comparison of the two lattice calculations
can be found in Sect. 4.

We stress that the theoretical formulae should be eval-
uated with hadronic parameters computed in a coherent
way, within the same lattice calculation, and not from dif-
ferent calculations (the “Arlequin” procedure according to
[12]), since their values and errors are correlated. All our
lattice results were obtained using a non-perturbatively
improved action [13], and with operators renormalized on

the lattice with the non-perturbative method of [14], as
implemented in [15,16]. Our new result is R(mb). For
completeness, we also present some relevant B parame-
ters which enter the calculation of the mixing and width
difference

BMS
S (mb) = 0.86(2)+0.02

−0.03, BMS
Bs

(mb) = 0.91(3)+0.00
−0.06.

(16)
The remainder of this paper is as follows: in Sect. 2 we
discuss the renormalization of the relevant operators and
the calculation of their matrix elements; the extrapolation
to the physical points and the evaluation of the statistical
and systematic errors are presented in Sect. 3; Sect. 4 con-
tains a comparison of our results with other calculations
of the same quantities as well as our conclusions.

2 Calculation of the matrix elements

In this section, we discuss the construction of the renor-
malized operators which enter the prediction of ∆ΓBs and
describe the extraction of their matrix elements in our
simulation.

Besides the operators in (3), we also need

Q̃S = b̄i(1 − γ5)sj b̄j(1 − γ5)si,

QP = b̄i(1 − γ5)sib̄j(1 + γ5)sj , (17)

Q̃P = b̄i(1 − γ5)sj b̄j(1 + γ5)si.

The five operators in (3) and (17) form a complete basis
necessary for the lattice subtractions which will be dis-
cussed later on. In [18], a new method, that allows the
calculation of ∆F = 2 amplitudes without subtractions,
has been proposed and feasibility studies are underway. If
successful, it obviously will be applied also to the calcula-
tion of ∆ΓBs

.
The matrix elements which contribute to ∆ΓBs

are
traditionally computed in terms of their value in the vac-
uum saturation approximation (VSA), by introducing the
so-called B parameters. The latter encode the mismatch
between full QCD and VSA values. There is a certain free-
dom in defining the B parameters (see for example the dis-
cussion in [19]). For QS and Q̃S , two equivalent definitions
will be used in the following:

〈B̄0
q |QL(µ)|B0

q 〉 =
8
3
m2

Bs
f2

Bs
BBs(µ),

〈B̄0
q |QS(µ)|B0

q 〉 = −5
3

(
mBs

mb(µ) +ms(µ)

)2

m2
Bs
f2

Bs

×BS(µ) ≡ −5
3
m2

Bs
f2

Bs
B′

S(µ),

〈B̄0
q |Q̃S(µ)|Bq〉 =

1
3

(
mBs

mb(µ) +ms(µ)

)2

m2
Bs
f2

Bs

×B̃S(µ) ≡ 1
3
m2

Bs
f2

Bs
B̃′

S(µ). (18)

The first definition is the traditional one that requires,
for the physical matrix elements, the knowledge of the
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Table 2. Numerical results for the ∆(g2
0)s and the matrix Z(g2

0 , µ). They have been
evaluated non-perturbatively in the Landau RI-MOM scheme, at β = 6/g2

0 = 6.2, at the
three different scales µ given in the table

Scale µ ∆L ∆P ∆P̃ ∆̃L ∆̃P ∆̃P̃

1.9GeV 0.005(1) 0.219(8) -0.016(8) -0.002(0) -0.094(3) 0.007(3)
2.7GeV 0.003(0) 0.175(5) -0.014(2) -0.001(0) -0.075(2) 0.005(1)
3.8GeV 0.002(1) 0.189(3) -0.012(2) -0.001(0) -0.081(1) 0.003(1)

Scale µ Z22(µ) Z23(µ) Z32(µ) Z33(µ)

1.9GeV 0.237(13) -0.122(16) 0.313(1) 1.018(5)
2.7GeV 0.282(12) -0.128(16) 0.229(0) 0.883(3)
3.8GeV 0.332(12) -0.184(16) 0.203(1) 0.902(0)

quark masses; the second one may present some advan-
tage, because the matrix elements are derived using phys-
ical quantities only (mBs

and fBs
). The label (µ) denotes

that operators and quark masses are renormalized, in a
given renormalization scheme (MS in our case) at the scale
µ. Since the matrix element of the first operator, essential
for B̄0

s–B
0
s mixing, was studied in detail in our previous

paper [11], here we only consider the two other relevant
operators, namely QS and Q̃S .

2.1 Matrix elements from correlation functions

Before presenting our results, let us recall the main steps
necessary to extract the matrix elements in numerical sim-
ulations. As usual, one starts from the (Euclidean) three-
point correlation functions:

C(3)
i (tP1 , tP2)

=
∑
x,y

〈0|P5(x,−tP2)Qi(0)P5(y, tP1)|0〉, (19)

where Qi denotes any of the operators enumerated in (3)
and (17). When the Qi and the sources P5 (which we
choose to be P5 = is̄γ5b) are sufficiently separated in
time, the lightest pseudoscalar-meson contribution dom-
inates the correlation functions and the matrix elements
can be extracted

C(3)
i (tP1 , tP2)

tP1 ,tP2�0−→
√ZP

2MP

×e−MP tP1 〈P̄ |Qi(a)|P 〉
√ZP

2MP
e−MP tP2 , (20)

where Z1/2
P = |〈0|P5|P 〉|. We take both mesons at rest

and label the bare operators on the lattice as Qi(a), to
distinguish them from their continuum counterparts. The
matching to the continuum renormalized operators is what
we discuss next.

2.2 Operator matching and renormalization

In this subsection, we describe the procedure used to get
the renormalized operator QS(µ), relevant in the calcu-

lation of ∆ΓBs
, from the lattice bare operators. This is

achieved through a two steps procedure:
(i) We define the subtracted operators Q′

S and Q̃′
S , obey-

ing to the continuum Ward identities (up to corrections
of O(a)), as

Q′
S = QS(a) +

∑
i=L,P,P̃

∆i(g2
0)Qi(a) ,

Q̃′
S = Q̃S(a) +

∑
i=L,P,P̃

∆̃i(g2
0)Qi(a) . (21)

The constants ∆i(g2
0), which we calculate using the non-

perturbative method discussed in [15,16], are listed in Ta-
ble 2. Note that the mixing (21) is a lattice artifact (as
a consequence of the explicit chiral symmetry breaking
in the Wilson action) and the subtraction ensures that
the resulting operators, Q′

S and Q̃′
S , have the same chiral

properties as in the continuum.
In principle, the mixing coefficients ∆i(g2

0) are func-
tions of the bare coupling constant g2

0 only. Therefore, at
fixed lattice spacing, they should be independent of the
scale at which the operators are renormalized. In practice,
due to some systematic effects, they may depend on the
renormalization scale (which corresponds to the virtuality
of the external quark legs). This induces an uncertainty in
the determination of the physical matrix elements which
will be accounted for in the estimate of the systematic
error.
(ii) CPS symmetry allows the mixing of QS and Q̃S under
renormalization. This is why we must consider both of
them, although our main target is the matrix element of
the renormalized QS(µ). In the second step, the operators
are renormalized as(

QS(µ)
Q̃S(µ)

)
=

(
Z22(µ) Z23(µ)
Z32(µ) Z33(µ)

) (
Q′

S

Q̃′
S

)
, (22)

where the structure of the mixing (Z23 �= Z32 �= 0) is
the same as in the continuum. We compute the renormal-
ization matrix non-perturbatively by using the method
of [16], in the Landau RI-MOM renormalization scheme.
The results for three values of the renormalization scale,
µ = {1.9GeV, 2.7GeV, 3.8GeV}, are given in Table 2.
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30 35 40
Time

1.0

1.5

1.0

1.5
B’S (µ=3.8 GeV)

 B’S
~

  (µ=3.8 GeV)

Fig. 1. The ratios defined in (23) are shown as a function of
Time = −tP2 at fixed tP1 = 16. All quantities are in lattice
units. The figure refers to κq = 0.1349 and κQ = 0.1220

2.3 Extraction of the B parameters

Equipped with suitably renormalized operators in the RI-
MOM scheme, we proceed by removing the external meson
propagators and sources from the correlation functions.
This can be done in two ways. From the ratios

C(3)
S (tP1 , tP2 ;µ)

− 5
3Z

2
AC(2)

AP (tP2)C(2)
AP (tP1)

→ 〈P̄ |QS(µ)|P 〉
− 5

3 |〈0|Â0|P 〉|2 ≡ B′
S(µ),

C(3)
S̃

(tP1 , tP2 ;µ)
1
3Z

2
AC(2)

AP (tP2)C(2)
AP (tP1)

→ 〈P̄ |Q̃S(µ)|P 〉
1
3 |〈0|Â0|P 〉|2 ≡ B̃′

S(µ),

(23)

we extract the B′ parameters (Method-I). The quality of
the resulting plateaus is illustrated in Fig. 1. Since the
lattice renormalization constant of the axial current (Â0 =
ZAs̄γ0γ5b) is µ independent, the anomalous dimension of
the parameter B′

S(µ) is exactly the same as for 〈QS(µ)〉.
On the other hand, if we combine the correlation func-

tions in the ratios

C(3)
S (tP1 , tP2 ;µ)

− 5
3Z

2
P (µ)C(2)

PP (tP2 ;µ)C(2)
PP (tP1 ;µ)

→ 〈P̄ |QS(µ)|P 〉
− 5

3 |〈0|P̂5(µ)|P 〉|2
≡ BS(µ),

C(3)
S̃

(tP1 , tP2 ;µ)
1
3Z

2
P (µ)C(2)

PP (tP2 ;µ)C(2)
PP (tP1 ;µ)

→ 〈P̄ |Q̃S(µ)|P 〉
1
3 |〈0|P̂5(µ)|P 〉|2

≡ B̃S(µ). (24)

we get the standard B parameters (Method-II). The
plateaus are shown in Fig. 2.

In the above ratios, we have used the renormalized
pseudoscalar density, P̂5(µ) = iZP (µ)s̄γ5b. The value of

30 35 40
Time

0.5

1.0

1.5

0.5

1.0

1.5

BS

 
(µ=3.8 GeV)

BS

~  
 (µ=3.8 GeV)

Fig. 2. As in Fig. 1 for the standard BS and B̃S , as specified
in (24)

ZP (µ) is also obtained non-perturbatively in the way de-
scribed in [14]. Numerically (and in the chiral limit), we
have ZP (µ) = {0.43(2), 0.45(2), 0.50(2)} in increasing or-
der of µ.

The second method has the advantage that the (rather
large) µ dependence of the operator 〈QS(µ)〉 is almost can-
celled by the anomalous dimension of the squared renor-
malized pseudoscalar density. On the other hand, the first
method seems more convenient because physical ampli-
tudes can be obtained without introducing the quark
masses, which are a further source of theoretical uncer-
tainty. We found, however, that B′

S has a very strong
dependence on the heavy-quark mass, which prevents a
reliable extrapolation to mBs

. Before discussing the sub-
tleties related to the extrapolation, we present our results
for the heavy-light meson masses directly accessible in our
simulation.

2.4 B parameters in the landau RI-MOM scheme

In this subsection we present the results for both sets of
B parameters. As in our previous paper [11], our study
is based on a sample of 200 independent quenched gauge
field configurations, generated at the coupling constant
β = 6.2, on the volume 243 × 48. We use three values of
the hopping parameter corresponding to the light-quark
mass (κq = 0.1344, 0.1349, 0.1352), and three values cor-
responding to the heavy quarks (κQ = 0.125, 0.122, 0.119).
The first source is kept fixed at tP1 = 16, while the second
one moves along the temporal axis. The 4-fermion oper-
ator under study is inserted at the origin (t = 0). After
examining the plateaus of the different ratios in (23) and
(24), for every combination of the hopping parameters, we
choose to make the fit for the time intervals tBS

∈ [31, 34]
and tB̃S

∈ [32, 35]. We present results for each value of κQ,
with the light quark interpolated to the s-quark or extrap-
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0 0.05 0.1
MP(κq,κq)

2

1.1

1.2

1.3

0 0.05 0.1
MP(κq,κq)

2

0.7

0.8

0.9

1

B’S (µ) BS (µ)

Fig. 3. Fit in the light-quark mass of BS(µ) and B′
S(µ) (at

µ = 3.8GeV) according to (25). Empty symbols denote data
obtained from our simulation, whereas filled symbols denote
quantities obtained after interpolation (extrapolation) to the
strange (up-down) light-quark mass. The heavy-quark mass
corresponds to κQ2 = 0.1220

olated to the d-quark. For a generic B-parameter, this is
obtained by fitting our data to the following expression:

B(mQ,mq) = αQ
0 + αQ

1 M
2
P (mq,mq). (25)

This is illustrated in Fig. 3, while a detailed list of results
is presented in Tables 3 and 4.

At this point we have obtained the matrix elements
parameterized in two ways (B′

S(µ)–B̃′
S(µ) and BS(µ)–

B̃S(µ), respectively) in the RI-MOM scheme, at three val-
ues of the heavy-quark masses (around the charm quark
mass). The matrix elements that we need refer, instead, to
the MS scheme and to the heavy mesons Bs. Thus, to get
the physical results, we have to discuss the scheme depen-
dence, and the extrapolation in the heavy-meson mass.

3 The physical mixing amplitudes

In this section we discuss the scaling behavior of the renor-
malized amplitudes (B parameters), the conversion of the
B parameters from the RI-MOM to the MS scheme and
the extrapolation of the results in the heavy-quark mass.
These points are all essential to obtain the final results and
to estimate the systematic errors. The explicit expressions
for the evolution matrices and the corrections relating dif-
ferent schemes have been derived from the results of [20,
21].

3.1 Scale dependence of the B parameters

The renormalized operators obtained non-perturbatively
are subject to systematic errors. It is thus important to
check whether the renormalized matrix elements follow

the scaling behavior predicted by NLO perturbation the-
ory. This is also important because we finally have to
compute the physical amplitudes by combining our ma-
trix elements with the Wilson coefficients evaluated using
perturbation theory in [4].

The scaling behavior of the matrix elements is gov-
erned by the following equation (we use the same notation
as in [20])

〈Q(µ2)〉 = WT [µ2, µ1]−1〈Q(µ1)〉, (26)

where the evolution operator W [µ2, µ1] can be written as

W [µ2, µ1] = M(µ2)U(µ2, µ1)M−1(µ1). (27)

U(µ2, µ1) is the leading order matrix and the NLO cor-
rections are encoded in M(µ). For our purpose, it is con-
venient to rewrite (27) in the following form

W [µ2, µ1] = w(µ2)w−1(µ1), (28)

where

w(µ) = M(µ)αs(µ)−γT
0 /2β0 , (29)

and β0 = 11 − 2nf/3. The one-loop anomalous dimension
is scheme independent and, in the basis (22), it is given
by

γ0 =

(
−28/3 4/3
16/3 32/3

)
.

The NLO contribution

M(µ) = 1̂ + J
nf

RI−MOM
αs(µ)
4π

(30)

is given in terms of the matrix Jnf

RI−MOM, which we write
explicitly for nf = 0

J
nf =0
RI−MOM =

 170749
27225 + 44

9 log 2 − 247372
27225 + 28

9 log 2

− 6667
27225 + 28

9 log 2 − 196424
27225 + 44

9 log 2

 ,

(31)

since our lattice results are obtained in the quenched ap-
proximation. These formulae are sufficient for the study of
the scaling behavior of B′

S(µ) and B̃′
S(µ). For BS(µ) and

B̃S(µ), since they are obtained by dividing the operator
matrix elements by 〈P̂5(µ)〉 = 〈0|P̂5(µ)|P 〉, we also need
the NLO evolution of the pseudoscalar density with the
scale µ, in the RI-MOM scheme and with nf = 0. This is
given by

〈P̂RI−MOM
5 (µ2)〉 =

(
αs(µ2)
αs(µ1)

)−4/11

×
(
1 − 489

242
αs(µ2) − αs(µ1)

π

)
〈P̂RI−MOM

5 (µ1)〉. (32)

We now use the above formulae to check whether our
lattice results scale as predicted by perturbation theory.
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Table 3. Results for B′
S(µ) and B̃′

S(µ) in the Landau RI-MOM scheme. The light-quark
mass is extrapolated/interpolated to d/s quarks

µ 1.9GeV 2.7GeV 3.8GeV
Light quark q = s q = d q = s q = d q = s q = d

B′
S(µ;κQ = 0.1250) 0.93(3) 0.98(5) 1.15(4) 1.21(6) 1.32(4) 1.38(7)

B̃′
S(µ;κQ = 0.1250) 0.99(4) 1.06(6) 1.21(4) 1.29(6) 1.41(5) 1.49(7)

B′
S(µ;κQ = 0.1220) 0.83(3) 0.85(4) 1.02(3) 1.05(5) 1.17(4) 1.20(5)

B̃′
S(µ;κQ = 0.1220) 0.87(3) 0.91(5) 1.06(3) 1.10(5) 1.23(4) 1.28(6)

B′
S(µ;κQ = 0.1190) 0.75(2) 0.77(3) 0.91(2) 0.94(4) 1.05(3) 1.08(4)

B̃′
S(µ;κQ = 0.1190) 0.77(3) 0.82(4) 0.94(3) 0.99(4) 1.10(3) 1.15(5)

Table 4. As in Table 3, but for BS(µ) and B̃S(µ)

µ 1.9GeV 2.7GeV 3.8GeV
Light quark q = s q = d q = s q = d q = s q = d

BS(µ;κQ = 0.1250) 0.87(3) 0.84(4) 0.85(2) 0.82(3) 0.87(2) 0.79(3)
B̃S(µ;κQ = 0.1250) 0.92(3) 0.91(4) 0.90(3) 0.88(4) 0.88(3) 0.86(4)

BS(µ;κQ = 0.1220) 0.90(3) 0.85(4) 0.88(2) 0.83(3) 0.85(2) 0.80(3)
B̃S(µ;κQ = 0.1220) 0.94(3) 0.91(4) 0.92(2) 0.88(4) 0.90(2) 0.86(4)

BS(µ;κQ = 0.1190) 0.92(2) 0.91(3) 0.90(2) 0.89(3) 0.87(2) 0.86(3)
B̃S(µ;κQ = 0.1190) 0.95(3) 0.96(4) 0.93(2) 0.94(3) 0.91(2) 0.91(3)

In Fig. 4, we plot the evolution of both B′
S(µ) and

BS(µ), by normalizing them at one of the scales at which
we have computed the renormalization matrix Zij in (22).

From the figure, we see that B′
S(1.9GeV) falls below

the other results. On the other hand, the evolution curves
relative to B′

S(µ = 2.7GeV) and B′
S(µ = 3.8GeV) are

closer to each other. This is to be contrasted to the sit-
uation for BS(µ) where the scale dependence is not as
large as for B′

S(µ), and the description of our data by the
perturbative NLO anomalous dimension is more satisfac-
tory, as also shown in Fig. 4. To convert our result to the
MS scheme, as central values we choose the B parame-
ters obtained with the non-perturbative renormalization
at µ = 3.8GeV. The difference with the other results will
be accounted in the systematic uncertainty.

3.2 B parameters in the MS scheme at µ = mb

In [4], the formulae in (2) and (4) were derived in the
MS scheme. For this reason we have to convert our re-
sults from RI-MOM to MS. We have chosen to change the
renormalization scheme before extrapolating in the heavy-
quark mass. The change of scheme is obtained by using
the relation

〈QMS(µ)〉 =
(
1̂ + rMS

αs(µ)
4π

)
〈QRI−MOM(µ)〉,

where

rMS =
1
18

 56 + 88 log 2 −8 + 56 log 2

−143 + 56 log 2 −115 + 88 log 2

 . (33)

We note that rMS is independent of nf . 〈QMS(µ =
3.8GeV)〉 is then evolved to µ = mb = 4.6GeV using
(26), with J

nf =0
RI−MOM replaced by

J
nf =0
MS

=

 9561
3025 − 20723

18150

1811
9075 − 4997

6050

 . (34)

The MS B parameters at µ = mpole
b = 4.6GeV are pre-

sented in Table 5. mpole
b = 4.6GeV corresponds to the MS

mass given in Table 1 and it is very close to the value used
in [4] to evaluate the Wilson coefficients at NLO.

3.3 Extrapolation to the Bs meson

From Tables 3, 4 and 5, we observe that the dependence
of B′

S on both the renormalization scale and the heavy-
quark (meson) mass is much more pronounced than in the
case of the parameter BS (see also Figs. 4 and 5). In par-
ticular, because of the large mass dependence, it is more
difficult to extrapolate B′

S to the physical point. This is
related to the fact that in (18) the ratio (mBs

/mb)2, dis-
tinguishing BS from B′

S , still varies very rapidly in the
mass range (around the charm) covered in our simula-
tion. A similar problem is found if one tries to extract
mb from the heavy-meson spectrum, computed with fully
propagating quarks, by extrapolating in the heavy-quark
mass. For this reason, so far, mb has been computed on
the lattice only by using the heavy quark effective the-
ory (HQET) [22] or non-relativistic QCD (NRQCD) [23].
Thus, although in principle we would prefer B′

S because
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Table 5. B parameters in the MS scheme at µ = 4.6GeV

κQ 0.1250 0.1220 0.1190
Light quark q = s q = d q = s q = d q = s q = d

mP [GeV] 1.85(7) 1.75(8) 2.11(9) 2.02(9) 2.38(10) 2.26(11)

B′
S(mP , mb) 1.52(5) 1.60(8) 1.35(4) 1.39(7) 1.21(3) 1.25(5)

B̃′
S(mP , mb) 2.18(8) 2.31(12) 1.93(6) 1.99(10) 1.72(5) 1.79(8)

BS(mP , mb) 0.73(2) 0.71(3) 0.76(2) 0.72(3) 0.78(2) 0.76(3)
B̃S(mP , mb) 1.05(3) 1.03(5) 1.08(3) 1.03(5) 1.10(3) 1.09(5)

2.0 3.0 4.0
µ [GeV]

0.5

1.0

1.5

B
’ S

R
I-

M
O

M
(µ

)

2.0 3.0 4.0
µ [GeV]

0.5

1.0

1.5

B
SR

I-
M

O
M
(µ

)

Fig. 4. NLO evolution of the parameters B′
S(µ) and BS(µ) in

the RI-MOM scheme. The curves are obtained by starting the
evolution from the lattice results (filled circles) at µ = 1.9, 2.7
and 3.8GeV, respectively

it allows the evaluation of the matrix element without us-
ing the quark mass, in practice our best results are those
obtained from BS . For the same reasons, we were unable
to extract R(mb) = 〈QS〉/〈QL〉 directly from the ratio of
the matrix elements. The strongest dependence of B′

S on
the quark mass finds its explanation in the framework of
the HQET, by studying the leading and subleading con-
tributions in the 1/mb expansion to the B parameters
[24]. Our estimates of (∆ΓBs/ΓBs) are then obtained with

R(mb) computed by using BS , BBs
and mb from Table 1,

as shown below. For completeness we also present the re-
sults for B′

S . Hopefully, when smaller values of the lattice
spacing, and hence larger values of the heavy-quark mass,
will be accessible, an accurate determination of the phys-
ical matrix element will be provided by B′

S .
In order to make the extrapolation in the heavy-quark

mass from the region where we have data to mb, we rely
on the scaling laws of the HQET. The B parameters in
Table 5 have been obtained using the anomalous dimen-
sion matrix of the massless theory. This is the appropri-
ate procedure since, from our data, µ is larger than the
heavy-quark mass, mQ, used in our simulation. In order
to use the HQET scaling laws, we have to evolve first to
a scale smaller than the quark mass, at mQ fixed, and
then to study the scaling at fixed µ as a function of the
heavy-quark mass. In practice, this is achieved, at LO in
the anomalous dimensions, by introducing the following
quantities:

Φ(mPs
,mb) =

(
αs(mPs

)
αs(mBs

)

)γ/2β0

B(mPs
,mb),

Φ′(mPs ,mb) =
(
αs(mPs)
αs(mBs

)

)γ′/2β0

B′(mPs ,mb), (35)

where we have introduced the matrices γ = γ0 − γ̃0 +

2(γ̃P − γP ), and γ′ = γ0 − γ̃0 +2γ̃A. B =
(
BS , B̃S

)T

and
similarly for B′. γ̃0 is the HQET anomalous dimension
matrix which at leading order is given by

γ̃0 = −8
3

(
2 1
1 2

)
, (36)

whereas γ̃P = γ̃A = −4 and the LO anomalous dimension
of the pseudoscalar density in full QCD is given by γP =
−8.

The quantity Φ(mPs ,mb) scales with the heavy-quark
(heavy meson) as

Φ(mPs ,mb) = α+
β

mPs

+ . . . (37)

The extrapolations of BMS
S (mb) and B′MS

S (mb) to mBs are
shown in Fig. 5. The results are

BMS
S (mb) = 0.86(2), B̃MS

S (mb) = 1.25(3),

B′MS
S (mb) = 0.63(3), B̃′MS

S (mb) = 0.91(5). (38)
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Fig. 5. Extrapolation of Φ(mP , mb) and Φ′(mP , mb) in 1/mP

to the Bs meson mass. mP is given in lattice units

As for the systematic uncertainties, we account for the
following two.
(1) If, instead of converting to the MS scheme before ex-
trapolating to mBs , we extrapolate our RI-MOM results
(obtained at µ = 3.8GeV) in the heavy quark by using
the same scaling laws of (35), then evolve to µ = mb, and
convert to the MS scheme, the results are3

BMS
S (mb) = 0.88(2), B̃MS

S (mb) = 1.27(3),

B′MS
S (mb) = 0.62(3), B̃′MS

S (mb) = 0.90(5).
(39)

(2) If we start from a µ lower than 3.8GeV, for example
µ = 1.9GeV, then BS(mb) and B̃S(mb) change by −3%,
while B′

S(mb) and B̃′
S(mb) drop by −6%.

3 If the last conversion from the RI-MOM to the MS scheme
is made by using nf = 4 the results remain remarkably stable
(they decrease by about 1%)

After combining these uncertainties, we arrive at our
final results:

BMS
S (mb) = 0.86(2)+0.02

−0.03, B̃
MS
S (mb) = 1.25(3)+0.02

−0.05,

B′MS
S (mb) = 0.63(3)+0.00

−0.04, B̃
′MS
S (mb) = 0.91(5)+0.00

−0.06.

(40)

From these numbers, we observe that there is a discrep-
ancy between the value of BMS

S (mb) and B′ MS
S (mb). Using

B′MS
S (mb) � (mBs

/mb)2BMS
S (mb), with (mBs/mb)2 = 1.6

from Table 1, we get B′ MS
S (mb) ∼ 1.37, which is about

twice the value of B′MS
S (mb) in (40).

In order to obtain the physical results we have used
BMS

S (mb), for which the extrapolation to the Bs meson
is much smoother. In this case, we are obliged to use the
quark mass to derive the matrix element needed to obtain
R(mb), which is the relevant quantity for (∆ΓBs/ΓBs), as
explained in the introduction. This is not a major concern,
however, since mb is known with a very tiny error (see
Table 1).

The best way to minimize the statistical uncertainty
is to compute on the same set of configurations

BMS
S (mb)

BMS
Bs

(mb)
= 0.95(3)+0.00

−0.02, (41)

which, when combined with the numbers from Table 1,
gives the wanted quantity

R(mb) = −5
8

(
mBs

mb(mb) +ms(mb)

)2
BS(mb)
BBs(mb)

= −0.93(3)+0.00
−0.01. (42)

4 Conclusion

In this section, we compare our results with previous lat-
tice studies and find that we can draw the following con-
clusion.

First lattice calculations of BS(µ) were performed in
[25,26], using the (unimproved) Wilson fermion action.
In [26] the B parameters were obtained in a modified MS
NDR scheme, at the scale µ = 2.33GeV, at a heavy-quark
mass corresponding approximately to the Ds mass. By
translating the result of the authors of [26] to the MS of [6],
one finds BMS

S (2.33GeV) = 0.81(1) and B̃MS
S (2.33GeV) =

0.86(1). To compare with these numbers, we have used
our results at κQ = 0.1250, interpolated to the strange
light-quark mass and then evolved down to µ = 2.33GeV.
We get BMS

S (2.33GeV) = 0.80(2) and B̃MS
S (2.33GeV) =

1.05(2). BMS
S is hence in very good agreement with the

value of [26], whereas our B̃MS
S is 20% larger. We note,

however, that the values BMS
S (2.33GeV) = 0.81 and B̃MS

S
(2.33GeV) = 0.86 correspond (only evolution but no ex-
trapolation in the heavy-quark mass) to BMS

S (mb) = 0.75
[6] which is 14% smaller than our number.
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In [17,27], NRQCD has been used to compute B′
S(mb).

A comparison with them is interesting, because effective
theories have different systematic errors with respect to
the approach followed in the present study. Their lat-
est result (which we convert to BS) reads BMS

S (mb) =
0.78(2)(10), which is in fair agreement with ours. More-
over their ratio BMS

S (mb)/BMS
Bs

(mb) ∼ 0.78/0.85 = 0.92
is very close to ours. This implies that, in spite of the
difference in the single B parameters, the same physical
answer for (∆ΓBs

/ΓBs
) is obtained from (8). In [17,27], in

order to get the width difference, these authors adopted,
however, another expression ((4) of [27]), which uses dif-
ferent inputs, namely the experimental inclusive semilep-
tonic branching ratio and the theoretical determination of
the decay constant fBs

= 245± 30MeV. Their result [17],
(∆ΓBs/ΓBs) = (10.7 ± 2.6 ± 1.4 ± 1.7) × 10−2, is about a
factor of two larger than ours. One may wonder whether
the difference is due to a different evaluation of the 1/m
corrections, which are so important in this game. From our
calculation, we find that this contribution to (∆ΓBs/ΓBs)
is about −8.6×10−2, identical to the value used in [17,27]
((9) of [27]). Besides the fact that these authors use a for-
mula which involves the inclusive semileptonic branching
ratio, the main difference stems, instead, from the use of
a very large value of fBs (and to a lesser extent from the
use of mb = 4.8GeV instead of 4.6GeV). We do not find
it justified to use the unquenched value of fBs , combined
with B parameters computed in the quenched approxi-
mation. What really matters is the combination of these
quantities in the matrix elements, and we do not know
how much the B parameters change in the unquenched
case. This is the reason why we prefer (8), which does not
require fBs

, but only R(mb) (which is essentially the same
for us and in [17]) and ξ, which is known to remain almost
the same in the quenched and unquenched case [10].

On the lattice, physical quantities relevant in heavy-
quark physics can be computed following two main routes,
either by extrapolating the results in the heavy-quark
mass from a region around the charm mass or by using
some effective theory (HQET or NRQCD). The two ap-
proaches have different systematics and in many cases lead
to results which are barely compatible. The Bs width dif-
ference is particularly lucky, in this respect, since R(mb)
in our calculation and in [17] are in excellent agreement
and lead to the same value of (∆ΓBs

/ΓBs
) if (8) is used.

It is not surprising that the authors of [17] predict a much
larger value for (∆ΓBs/ΓBs), since they use a very large
value of fBs

, which is not needed in (8). We find that, in
order to reduce the present error, a better determination
of the 1/m correction, although rather hard to make, is
very important. Obviously, calculations with larger heavy-
quark masses and without quenching are also demanded
for a better control of the remaining systematic errors.
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